

Soil Particle Size

Overview

Students will learn about soil particle size, soil composition and may reach deeper into soil texture analysis.

Background Information

- "Why is soil important?"
 - Soil provides a foundation for life.
 - It gives a medium for plants to grow [] plants are food for other living things
 - Soil itself is food
 - Habitat for living things- rodents, bugs, worms, microbes
 - Used in construction- roads, dams, buildings, foundations, etc.
 - Soil absorbs, holds, and filters water
- "What is soil made of?"
 - Soil is made up of water, air, minerals, organic matter, living things and soil particles.
- "What are the three types of soil particles?"
 - Soil particles vary in sizes which are put into three categories: sand, silt, and clay. Organic matter may also be present.
 - The smallest of these three is clay (less than 0.002 mm)
 - The middle of these three is silt (0.002-0.05mm)
 - The largest of these three is sand (0.05-2.0 mm)
 - Anything over 2.0 mm is called gravel or stone

(if using the soil particle size demonstration now would be a good time to use that to give a visual of relative size)

- "Why is particle size important?"
 - o Particle size is important because it aids in the movement of water and air
 - The larger the particle, the more space there is between them (pore space). This leaves room for water and air to flow.
 - The smaller the particle, the less space there is which means there is not as much space for water and air to move.
 - Sandy soils tend to drain water whereas soils heavy in clay tend to hold on to water.
- Most soil found in nature is not comprised of just one type of soil particle, but is a mixture of sand, silt, and clay in different proportions.
 - The proportion of particle sizes is what gives soil its texture.

Supplies

- Soil jars
- Blank note cards *
- Pencil (not included) *
- Calculator (not included) *
- Ruler (not included) *
- Student Worksheet 1 (master copy included)
- Student Worksheet 2 (master copy included) *
 *these are only needed if you are doing Student Worksheet 2

Directions

The activity can be done in small groups or individually

- 1. Give each student/group a jar (if doing *Student Worksheet 2* make sure to have equal numbers of each color of jars –red, blue, green, and yellow.)
- 2. Have the students take the jar and shake it gently until all the soil is loose and mixed into the water
 - As a side note, you can mention this is what happens when it rains hard or there is a weather event. The soil is eroded or stirred up in bodies of water (rivers, lakes, etc.)
- 3. Allow the jars to sit until the soil settles (depending on soil type some may take up to a few hours)
- 4. Once it is settled, have the students answer the questions on the *Student Worksheet* 1 and discuss observations.
- 5. For older students or a longer lesson, you may want to use *Student Worksheet 2* to dive deeper into the discussion.
 - You can also use this calculator online: <u>https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/?cid=nrcs142p2_05416</u> <u>7</u>

You can also create your own soil samples by filling a straight sided jar halfway with soil and then fill the rest with water.

Student Worksheet 1

Observation Questions

- 1. What happened to the soil?
- 2. How many layers of soil do you observe?
- 3. What is in each layer? How do you know?
- 4. Which soil component (sand, silt, or clay) is the heaviest? The lightest?
- 5. Which soil component (sand, silt, or clay) is the largest? The smallest?
- 6. Would water move fast or slow through your soil sample? Why?

Student Worksheet 2

Calculate the percentage of each particle type using the directions below.

- Using a blank note card, mark the height of each layer and label
- Use a ruler to measure the total height of each layer
- Take this number and divide it by the total height of all the layers.
- Convert this number to a percentage by multiplying by 100.
- Repeat this for the other layers.
- Note- not all layers may be present

Sample Color: _____

Layer	Height	Percentage
Sand		
Silt		
Clay		
Total		100%

Calculate the soil texture using Figure 1

• Using the numbers from your calculations above (#6) to determine what the approximate soil texture would be according to the soil texture chart.

Texture: _____

Now, look at the other samples and fill out the table for each.

Sample Color: _____

Layer	Height	Percentage
Sand		
Silt		
Clay		
Total		100%

Texture: _____

Sample Color: _____

Layer	Height	Percentage
Sand		
Silt		
Clay		
Total		100%

Texture: _____

Sample Color: _____

Layer	Height	Percentage
Sand		
Silt		
Clay		
Total		100%

Texture: ______

What are the differences in texture? Why do you think that is? Would other locations have different textures?

